基于PSO优化小波变换的测井信号去噪研究
来源:电子技术应用ChinaAET 发布时间:2023-01-02 分享至微信

作者:
魏振华,胥越峰,刘志锋,舒志浩
作者单位:
1.核技术应用教育部工程研究中心,江西 南昌330013;
2.东华理工大学 信息工程学院,江西 南昌330013;
3.江西省放射性地学大数据技术工程实验室,江西 南昌330013。
摘要:
小波变换被广大科研工作者用于测井信号去噪研究上,而小波参数的选取直接影响最后的去噪效果,所以需要设计获取测井信号最佳小波变换参数的算法。为应对测井信号处理中多种多样的情况,创新性地提出用粒子群算法来改进小波变换参数的选取,并应用随机惯性权重策略改变粒子群算法权重参数,提升粒子群算法收敛速度,增强搜索寻优能力,引入自然选择机制以增加种群多样性,获得对应测井数据的最佳小波变换参数,将最佳小波变换参数应用到阈值法小波变换去噪中,有效分离了有用信号和无用噪声。该算法有效地提高了测井信号的信噪比,降低了均方根差,实现了对测井信号中噪声的有效去除。
引言:
在测井信号的采集、处理、转发过程中,由于环境、仪器、人为等因素的干扰测井信号中总会存在噪声,如果不经处理直接使用这些带噪信号会对矿产勘探产生误差,更有严重者甚至会造成重大的经济损失。因此,在信号处理的过程中去除测井信号的噪声就显示出了必要性。测井信号去噪有很多方法,小波变换突破了以傅里叶为代表的传统方法的显著缺陷,在时频域上都有着亮眼的表现,是去噪方法的主要技术之一。
主流的研究表明小波变换的参数设置会直接影响最后的滤波去噪效果,如李维松等统合硬、软以及Garrote阈值去噪的优点,构造出一个新的改进阈值函数,在突变性及平滑性信号方面取得了更优的降噪成果[1];朱荣亮等为更好地滤除噪声,提出一种新阈值函数,通过仿真确定最佳小波函数类型和分解层数[2];谢政宇等根据均方根误差和平滑度的变化特性构建了一种复合评价指标,通过评价指标来优选小波参数[3]。但是在对测井信号的处理中,因测井数据的庞大与多样性,单独改进阈值函数等对不同地区、不同井、不同井次、不同测井曲线的去噪效果不够好,所以在参考了解文献[4]-[6]中体现出粒子群算法寻找最优点的优势以及测井信号处理的实际需求后,采取群智能算法中的粒子群算法(Particle Swarm Optimization,PSO)来获取不同目标下的最佳小波变换参数,并对粒子群算法做一定的优化。

文章来源:《电子技术应用》杂志11月刊
点击下方阅读原文,下载论文PDF






☞商务合作:☏ 请致电010-82306118 /✐ 或致件 Tiger@chinaaet.com

这里“阅读原文”,直达电子技术应用官网

[ 新闻来源:电子技术应用ChinaAET,更多精彩资讯请下载icspec App。如对本稿件有异议,请联系微信客服specltkj]
存入云盘 收藏
举报
全部评论

暂无评论哦,快来评论一下吧!